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The occurrence of losses can be attributed, following [2], to the

fact that

“if the charge motions are sufficiently rapid, then the D-E relationship
must break down and show a dispersion. We therefore assume that
in actuality some effect, such as a finite relaxation time for the di-
electric when changing its polarization, will really prevent the wave
front from ever actually achieving infinite slope, but that the relaxa-
tion time is short enough, so that the wave front can become very
steep. The motion of such a steep wave front can be treated without
taking into account the detailed behavior of the relaxation (or other
dispersion mechanism). A treatment of the shock front, calculating
its thickness as a function of the dispersion behavior, can be given
[5] but is not relevant to our present purposes.”

We have revised the original text by replacing the original word
“ferroelectric” by “dielectric,” and have changed the reference

numbering.
A nonlinear dielectric cannot be a vacuum, it must contain polar-

izable entities, with moving charges. These moving charges must see
some damping. This makes the dielectric lossy. In the simplest cases

this can be represented b.y a series resistance, giving the capacitance
the correct relaxation time for charge displacement.

Karbowiak and Freeman [4] refer to this explanation as ‘(not

tenable.” Their reason: ‘(When the resistive elements are sufficiently

small, the rate of energy loss in the shock region is much too SIOiv to
account for the loss implied.” It is easily shown that this statement

about losses is incorrect, and that in the limit of small resistances,

the loss is independent of the value of the resistance. Rather than
take up the space here, for this straightforward integration, the

following arguments are put forth.
1) The reader is referred to [3], and a number of its reference

in turn. In several of these, detailed shock structure is discussed.
The shock structure is resolved, into a continuous transition with
bounded slope, by any resistance in series with the nonlinear dielec-

tric, no matter how small that resistance is. Since the equations used
to derive this are consistent with conservation of energy, any energy
lost in the shock propagation must be dissipated in the resistances.

2) An elementary circuit analogy is given which involves all the

same physical points. Consider the discharge of a capacitor through a
conductor. All of the energy originally in the capacitor is dksipated

in the resistance of the conductor, no matter how small that resistance

is. Consider the expression for the energy loss, f i2Rdt, as we let R

become small. The length ot time over which we have appreciable
losses then becomes similarly small. On the other hand, zi goes up,

duiing this time, as 1/R2. As a result, the integral remains constant.
What if in 2) we really insist on a strictly Iossless conductor?

Then, of course, the inductance of the current flow path cannot be
neglected. The capacitive energy becomes inductive, and we establish

oscillations.

What happens in our shock problem if we similarly insist on a

polarizable dielectric, which (in contradiction to the dispersion rela-

tions) is genuinely Iossless? Then the inertia of the charges which
are dkplaced to establish the polarization cannot be neglected. Then,

as was shown in [5], the shock does not have a simple monotonic

transition, but instead oscillations are left in its wake.
Karbowiak and Freeman [4], after criticizing this author for

invoking a 10SSYdielectric, come to the conclusion that, “It is im-
possible to realize a continuous loss-free transmission medium which
would be characterized by (a) non-linear . . . C(V).” Since nonlinear
dielectrics certainly exist, the conclusion must be that they are Iossy.

But is that not the very point they found objectionable in my work?
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Rebuttal of “Dispersion of Nonlinear Elements as a

Source of Electromagnetic Shock Structure”

A. E. KARBOWIAK AND R. H. FREEMAN

Afrsfract-lt is pointed out that if the classical method of weak

solution ie to be used for the solution of the problem, then it is neces-

sary to include a resistive element of a sufficient magnitude. This
also is a feature of Landauer’s worli.1 The solution so obtained is
accurate under well-defined conditions, and among others, it can be
shown that energy losses associated with the shock front can be
accounted for by that resistance. However, it is inconsequential to
assume that as the value of the resistive element is reduced to zero,
the energy balance continues to hold. This requires a separate proof.

An exact analysis based on a series of experimental results and

computer modeling shows that the classical discrepancy can be ac-
counted for in a different way.

We do not think there is anythhg objectionable in Landauer’s

work,l but the reader should be aware that some of the observations
and conclusions reached in Landauer’s work are inconsequential

and misleading.
At the outset, it should be clarified that a wavegoidlng structure

can be dispersive for two distinct reasons.
1) The structure is iterative, that is, it consists of lumped param-

eter elements.
2) It is distributed, but with R, L, G, and C parameters such that

the ratio of R/L # G/C.
In the first case the physical system can be correctly modeled by a

difference equation (DE). This case, for nonlinear elements, is the

subject of a separate study [1], while the other case was the subject
of a recent publication (footnote 1, [4]) and is also the subject of

the present discussion.
Case 2) can be modeled by partial differential equations (PDE)

derivable from Maxwell’s equatione. Implicit in such modeling are

the constitutive relations describing the equivalent line parameters

(R, L, G, and C). However, energy conservation need not be obeyed.
This was first commented on by Rayleigh in 1910 [2], who evidently

was also puzzled by the anomaly when he said, in relation to a loss-

free eystem, “I fail to understand how a loss of energy can be ad-
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mitted in a motion which is supposed to be subject to the isothermal

or adiabatic law, in which no dissipative action is contemplated.”

Since that time many other researchers have studied thk problem,

but it was Lax [3] who discussed explicitly the conservation laws,

while a broad description of the problem can be found elsewhere,

e.g., [4]. These studies indicate that whether the system is linear

or not, Maxwell’s equations per se are not sufficient to ensure con-

servation of energy and other relevant quantities, and that entropy

must also be taken into account. The mathematical theory of the
relevant nonlinear PDE. has been developed (particularly in the

field of fluid dynamics) into a useful method, through the concept
of ~tweak solution” [5]. Yet the theory is not entirely free from

internal inconsistencies,j but it does enable one to obtain solutions

in agreement with observations relating to viscous fluids. However,

electrical transmission lines can be made with very small losses, and
the weak-solution approach leaves much to be desired.

The work of Landauer used, essentially, the results relating to the

weak solution. For this reason it is necessary to include resistance in

the circuit to satisfy the conditions for the particular mathematical

model, but this has nothhg to do with the physics of the problem.

Moreover, this resistance must be larger than a certain minimum
value. This is a feature of the weak solution, and, as such, does not
detract from tbe value of Landauer’s contribution. But the weak
solution cannot be used to deduce the correct result for a lossless
case.

It is inconsequential to say that the lost energy cm be accounted
for by such ad hoc means as radiation or resistive losses. One needs

to prove it, and the literature does not provide such a proof except

when condkions for a weak solution hold.

Our studies based on detailed calculations, laboratory experi-

ments, and computer modeling [1] show that shock-wave propaga-
tion in a loss-free line (which can be dispersive if of class 1) is not

accompanied by energy losses, and that for a line with small losses, a
complete balance of energy also holds. But thk case cannot be treated

by classical methods using the weak-solution concept. More specifi-
cally, one could not account for the classical energy loss associated

with a shock front using the concept of weak solution, because the
time constant associated with energy dissipation is too short to
ensure a detailed balance of energy. Landauer’s viewpoint on this

matter is not, therefore, tenable.

In (footnote 1, [2]), it is stated without proof that energy losses
associated with a shock front can be accounted for by resistive
elements, but the reader is left wondering what happens when the

system is loss free.

In the present letter, Landauer gives further material for argu-

ment by considering discharge of a condenser through a conductor.
This argument is misleading. The problem so stated is improperly
formulated: the mathematical model must contain capacitance,
resistance, and inductance. One can, in principle, balance out the
resistance by the suitable addition of negat,ive resistance and there-
fore consider a loss-free case, and even consider a model with a

negative resistance. But one may not leave out the inductance or

the capacitance from the mathematical modeling.

With the correct model one can show that as the resistance is
reduced to zero, so the time taken to dissipate a given amount of
energy increases without limit to infinity; the same would happen

with a nonlinear lumped parameter line [1]. And it is precisely for
this reason that it is not good enough to assume that resistive ele-
ments per se can account for the energy discrepancy associated with

the classical weak solution, and worse still to assume that the energy

balance would also be satisfied as the resistive elements are reduced

to zero.
We cannot, therefore, agree with the reasoning contained in argu-

ments 1) and 2) of Landauer’s letter.

When dealing with a distributed system, there is a further com-
plication in that one would need to justify the step in which one

passes from the DE to the corresponding PDE. For a linear problem

this can be justified, but not so readily for the nonlinear case. In
this latter event, and for the loss-free case, the only limit that is
justifiable is the one corresponding to the linear case. Thus the con-
clusions concerning the realizability as stated in our publication
(footnote 1, [4]) stand.
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Comments on “Characterization of Microwave Oscillator

and Amplifier Circuits Using an IMPATT Diode Biased

Below Breakdown”

N. D. KENYON

In the above short paper,l the method described for the character-
ization of IMPATT’S and their circuits is based entirely upon an as-

sumption that the whole oscillator can be correctly described by a

single-resonant circuit. This the authors have been careful to em-

phasize. But it is by no means clear that such an assumption is tenable
for any normal circuit configurations, nor that the test described

to confirm the given equivalent circuit is sufficiently stringent.
Though the resonant absorption may be fairly narrow, and its varia-

tion with diode bias smooth, this is no guarantee that the circuit
is single tuned, that it does not, for example, require a further series
reactance giving a broad resonance elsewhere, or that the components
of the equivalent circuit are not themselves functions of frequency.

A case in point is the very circuit citedjl the resonanhcap circuit
much used in millimeter-wave IMPATT evaluation. It is known [1]

that thk circuit has a series inductance associated with the pos-

supporting the cap, and that therefore changes in absorption fret

quency with diode capacitance are not so simply related as the single

tuned theory implies.
Furthermore, it is claimedl that other evaluation methods are

handicapped by the package transformation, and yet the very
existence of package parasitic makes the given equivalent circuit
invalid. When a similar method [2] was applied to a circuit known
to exhibit basically single-tuned properties, it was still found neces-
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